On Complete Bicubic Fractal Splines
نویسندگان
چکیده
منابع مشابه
C1 bicubic splines over general T-meshes
The present authors have introduced polynomial splines over T-meshes (PHT-splines) and provided the theories and applications for PHT-splines over hierarchical T-meshes. This paper generalizes PHT-splines to arbitrary topology over general T-meshes with any structures. The general PHT-spline surfaces can be constructed through an unified scheme to interpolate the local geometric information at ...
متن کاملApproximation of Surfaces by Fairness Bicubic Splines
In this paper we present an approximation method of surfaces by a new type of splines, which we call fairness bicubic splines, from a given Lagrangian data set. An approximating problem of surface is obtained by minimizing a quadratic functional in a parametric space of bicubic splines. The existence and uniqueness of this problem are shown as long as a convergence result of the method is estab...
متن کاملGeneralizing bicubic splines for modeling and IGA with irregular layout
Quad meshes can be interpreted as tensor-product spline control meshes as long as they form a regular grid, locally. We present a new option for complementing bi-3 splines by bi-4 splines near irregularities in the mesh layout, where less or more than four quadrilaterals join. These new generalized surface and IGA (isogeometric analysis) elements have as their degrees of freedom the vertices of...
متن کاملApplication of Fuzzy Bicubic Splines Interpolation for Solving Two-Dimensional Linear Fuzzy Fredholm Integral Equations
In this paper, firstly, we review approximation of fuzzy functions by fuzzy bicubic splines interpolation and present a new approach based on the two-dimensional fuzzy splines interpolation and iterative method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equation (2DLFFIE). Also, we prove convergence analysis and numerical stability analysis ...
متن کاملFractional Laplacians, splines, wavelets, and fractal processes
Our aim is to propose a multi-dimensional operator framework that provides a bridge between approximation theory (in particular, the construction of polyharmonic splines and wavelets) and the investigation of self-similar stochastic processes. Our investigation starts with the identification of the linear differential operators that are translation-, scaleand rotation-invariant; these are the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2010
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2010.13024